Math 102

Krishanu Sankar

November 6, 2018

Goals Today - Qualitative analysis of Autonomous Differential Equations

- What is an autonomous DE?
- Example: the logistic equation
- Solutions to an autonomous DE
- Practice...

Autonomous Differential Equations

nomous
$= t$ $P + 2P$ $\frac{t^2 + t}{P}$ e^{3t}

An autonomous differential equation has the form

$$\frac{dP}{dt} = f(P)$$

Such differential equations are also called time-independent.

Logistic Growth

$$\frac{dP}{dt} = aP - bP^2$$

where a and b are positive constants.

- This equation models population growth, i.e. if P(t) is the size of a population at time t.
- The equation above has two steady states: 0 and $\frac{a}{b}$. $\frac{a}{b}$ is called the carrying capacity.

Logistic Growth

$$\frac{dP}{dt} = aP - bP^2$$

where a and b are positive constants.

- This equation models population growth, i.e. if P(t) is the size of a population at time t.
- The equation above has two steady states: 0 and $\frac{a}{b}$. $\frac{a}{b}$ is called the carrying capacity.

We'll pick specific constants, and analyze $\frac{dP}{dt} = P^2 - 20P.$

$$\frac{dP}{dt} = 20P - P^2$$

Question: What are the steady states for this differential equation?

$$\frac{dP}{dt} = 20P - P^2$$

Question: What are the steady states for this differential equation?

•
$$P(t) = 0$$
 and $P(t) = 20t$.

▶
$$t = 0$$
 and $t = 20$.

•
$$P(t) = 0$$
 and $P(t) = 20$.

•
$$P(t) = e^{0t}$$
 and $P(t) = e^{20t}$.

State Space

For an autonomous differential equation, the state space is a graph of $\frac{dP}{dt}$ against P.

Question: What does the red point on the graph correspond to?

- When P = 10, the population doesn't change.
- When P = 10, the population is growing at the maximum possible rate.
- When t = 10, the population is growing at the maximum possible rate.
- Confused, help!

Question: What does the red point on the graph correspond to?

- ▶ When *P* = 10, the population doesn't change.
- When P = 10, the population is growing at the maximum possible rate.
- When t = 10, the population is growing at the maximum possible rate.
- Confused, help!

Sketching solutions

$$\frac{dP}{dt} = 20P - P^2$$

Question: True or false: there can be two solutions which cross each other.

Sketching solutions

$$\frac{dP}{dt} = 20P - P^2$$

Question: True or false: there can be two solutions which cross each other.

False! If two solutions crossed each other, then at the crossing point there would be two possible values of $\frac{dP}{dt}$!

Sketching Solutions

Qualitative Analysis of Autonomous DE's

- Calculate the steady states. Draw these trajectories.
- Calculate whether $\frac{dy}{dt}$ is positive or negative in each region.
 - lt maybe help to graph $\frac{dy}{dt}$ vs y, i.e the phase line.
 - Stable and unstable steady states.
- Sketch solutions.
 - No two solutions can cross.
 - If y(t) is one solution, then y(t + C) is a solution for any constant C. This means that any horizontal translate of a solution is also a solution.