Math 102

Krishanu Sankar

November 6, 2018

Goals Today - Qualitative analysis of Autonomous Differential Equations

- What is an autonomous DE?
- Example: the logistic equation
- Solutions to an autonomous DE
- Practice...

Autonomous Differential Equations

Autonomous	Not Autonomous
$\frac{d P}{d t}=3 P$	$\frac{d P}{d t}=t$
$\frac{d P}{d t}=20 P-P^{2}$	$\frac{d P}{d t}=t^{2} P+2 P$
$\frac{d P}{d t}=\frac{P^{3}-3 P}{2 P^{2}+1}$	$\frac{d P}{d t}=\frac{t^{2}+t}{P}$
$\frac{d P}{d t}=\sin (P)$	$\frac{d P}{d t}=e^{3 t}$

An autonomous differential equation has the form

$$
\frac{d P}{d t}=f(P)
$$

Such differential equations are also called time-independent.

Logistic Growth

$$
\frac{d P}{d t}=a P-b P^{2}
$$

where a and b are positive constants.
This equation models population growth, i.e. if $P(t)$ is the size of a population at time t.
The equation above has two steady states: 0 and $\frac{a}{b}$. $\frac{a}{b}$ is called the carrying capacity.

Logistic Growth

$$
\frac{d P}{d t}=a P-b P^{2}
$$

where a and b are positive constants.
This equation models population growth, i.e. if $P(t)$ is the size of a population at time t.
The equation above has two steady states: 0 and $\frac{a}{b}$. $\frac{a}{b}$ is called the carrying capacity.
We'll pick specific constants, and analyze $\frac{d P}{d t}=P^{2}-20 P$.

$\frac{d P}{d t}=20 P-P^{2}$

Question: What are the steady states for this differential equation?

- $P(t)=0$ and $P(t)=20 t$.
- $t=0$ and $t=20$.
- $P(t)=0$ and $P(t)=20$.
- $P(t)=e^{0 t}$ and $P(t)=e^{20 t}$.

$\frac{d P}{d t}=20 P-P^{2}$

Question: What are the steady states for this differential equation?

- $P(t)=0$ and $P(t)=20 t$.
- $t=0$ and $t=20$.
- $P(t)=0$ and $P(t)=20$.
- $P(t)=e^{0 t}$ and $P(t)=e^{20 t}$.

$\frac{d P}{d t}=20 P-P^{2}$

$\frac{d P}{d t}=20 P-P^{2}$

State Space

For an autonomous differential equation, the state space is a graph of $\frac{d P}{d t}$ against P.

dP/dt

$d \mathrm{dP} / \mathrm{dt}$

Question: What does the red point on the graph correspond to?

- When $P=10$, the population doesn't change.
- When $P=10$, the population is growing at the maximum possible rate.
- When $t=10$, the population is growing at the maximum possible rate.
- Confused, help!

Question: What does the red point on the graph correspond to?

- When $P=10$, the population doesn't change.
- When $P=10$, the population is growing at the maximum possible rate.
- When $t=10$, the population is growing at the maximum possible rate.
- Confused, help!

Sketching solutions

$$
\frac{d P}{d t}=20 P-P^{2}
$$

Question: True or false: there can be two solutions which cross each other.

Sketching solutions

$$
\frac{d P}{d t}=20 P-P^{2}
$$

Question: True or false: there can be two solutions which cross each other.

False! If two solutions crossed each other, then at the crossing point there would be two possible values of $\frac{d P}{d t}$!

Sketching Solutions

Qualitative Analysis of Autonomous DE's

- Calculate the steady states. Draw these trajectories.
- Calculate whether $\frac{d y}{d t}$ is positive or negative in each region.
- It maybe help to graph $\frac{d y}{d t}$ vs y, i.e the phase line.
- Stable and unstable steady states.
- Sketch solutions.
- No two solutions can cross.
- If $y(t)$ is one solution, then $y(t+C)$ is a solution for any constant C. This means that any horizontal translate of a solution is also a solution.

